Rapid syntheses of N
HomeHome > News > Rapid syntheses of N

Rapid syntheses of N

Jan 29, 2024

Nature Communications volume 13, Article number: 3337 (2022) Cite this article

3998 Accesses

3 Citations

1 Altmetric

Metrics details

The wide-ranging potencies of bioactive N-fused heterocycles inspire the development of synthetic transformations that simplify preparation of their complex, diverse structural motifs. Heteroaryl ketones are ubiquitous, readily available, and inexpensive molecular scaffolds, and are thus synthetically appealing as precursors in preparing N-fused heterocycles via intramolecular acyl-transfer. To best of our knowledge, acyl-transfer of unstrained heteroaryl ketones remains to be demonstrated. Here, we show an acyl transfer-annulation to convert heteroaryl ketones to N-fused heterocycles. Driven via aromatisation, the acyl of a heteroaryl ketone can be transferred from the carbon to the nitrogen of the corresponding heterocycle. The reaction commences with the spiroannulation of a heteroaryl ketone and an alkyl bromide, with the resulting spirocyclic intermediate undergoing aromatisation-driven intramolecular acyl transfer. The reaction conditions are optimised, with the reaction exhibiting a broad substrate scope in terms of the ketone and alkyl bromide. The utility of this protocol is further demonstrated via application to complex natural products and drug derivatives to yield heavily functionalised N-fused heterocycles.

N-fused heterocyclic compounds, such as pharmaceuticals, agrochemicals, plastics, and dyes (Fig. 1a), are integrated into everyday life1,2,3,4,5,6. Big data analysis shows that heterocycle synthesis is one of the most common reactions in the field of medicinal chemistry7,8. Among the best-selling therapeutics, almost a third contain fused heterocyclic structures9. Due to the high value of N-fused heterocycles, their novel, effective, flexible, general syntheses require investigation10,11,12.

a N-fused heterocycles are ubiquitous within critical molecules, including biologically active natural and synthetic compounds and fine chemicals for use in functional materials. b Transfer-annulation strategy for synthesis of N-fused heterocycles. c Different strategies used in acyl transfer of ketones. d Fused heterocycle synthesis in this study via aromatisation-driven acyl tranfer of heteroaryl ketones with alkyl bromides.

Acyl transfer is a critical process in various biological transformations13. In the field of organic synthesis, acyl transfer is frequently used in formation carbonyl compounds14,15,16,17,18. A typical acyl transfer employs a reactive carboxylic acid derivative (e.g. an acyl chloride or a thioester) as an acyl source. However, whether relatively inert ketones may serve as acyl transfer agents remains unclear?

Ketones are ubiquitous functional groups that not only occur widely in drug molecules and natural products but also act as bulk feedstocks in the syntheses of fine chemicals and materials. They are stable, non-toxic, and simple to prepare via various methods, rendering them ideal synthetic precursors19. If intramolecular acyl transfer of heteroaryl ketones can be realised, a transfer-annulation strategy may be employed in N-fused heterocycle preparation (Fig. 1b). However, owing to the kinetic inertness of C–C bonds, acyl transfer of ketones largely focuses on highly strained ketones20,21,22,23,24,25,26. For unstrained ketones27,28,29,30,31,32, the most common strategy involves using directing groups to form of a stable chelate (Fig. 1c)33,34,35,36,37,38,39,40. Although effective, the use of directing groups complicates the overall synthesis and limits the scope of the accessible products. Hence, a acyl transfer of unstrained ketones for use in N-fused heterocycle synthesis is warranted.

Aromatisation, which enables delocalisation of electron density, stabilising the molecule41, is a critical thermodynamic driving force in the field of organic chemistry42,43,44,45, e.g. aromatisation-driven deacylations of ketones are prominent bond-cleavage strategies46,47,48. Therefore, we conceived a approach for the acyl transfer of unstrained heteroaryl ketones driven by aromatisation of a pre-aromatic intermediate (Fig. 1d). This strategy may be suitable for use in the syntheses of N-fused heterocycles, and, critically, the directing group is no longer required. The next challenge in this strategy is the in situ formation of special, high-energy, pre-aromatic substrates. Transition metal-catalysed dearomatisation is a straightforward strategy to prepare spirocyclic scaffolds49,50,51,52. The spirocyclic intermediates, which are formed in situ from readily available heteroaryl ketones via dearomatisations53,54,55,56, should serve as pre-aromatic precursors to facilitate rearrangement (Fig. 1d). This likely involves a Pd-catalysed dearomative spirocyclisation of a heteroaryl ketone with an alkyl bromide to generate a pre-aromatic intermediate (A), which is then intramolecularly trapped by the heterocyclic nitrogen57,58,59,60,61. The resulting intermediate (B) may subsequently lose a hydrogen, restoring aromaticity to yield the fused heterocyclic product.

Here, we report an acyl transfer-annulation of heteroaryl ketones driven by aromatisation. This method is operationally simple, scalable, and applicable to late-stage modifications of natural products and drug derivatives, which make it a valuable method for the synthesis of organic N-fused heterocycles.

To explore this strategy, we initially used a heteroaryl ketone with a tethered olefin (1), which was prepared in one step using commercially available benzimidazole and 2-vinylbenzoyl chloride, as a model substrate. Because of the unique properties of difluoromethylene group (CF2) and its critical applications in medicinal chemistry62,63,64, ethyl bromodifluoroacetate (BrCF2COOEt) was employed as the coupling partner. After systematic screening, the desired rearrangement product (2) is obtained in a 90% yield using PdCl2 in combination with 1,1-bis(diphenylphosphino)pentane (dpppent, L1) as the ligand and Na2CO3 as the base in dioxane/tetrahydrofuran (THF) (Table 1, entry 1). The structure of 2 was unambiguously determined by X-ray crystallography. In addition, the Pd catalyst appears to be critical in this reaction. Using Pd(OAc)2 or Pd2(dba)3 (dba = dibenzylideneacetone) as the catalyst results in much lower yields (Table 1, entries 2–3), and other metals, such as NiCl2 and FeCl2, are completely ineffective (Table 1, entry 4). A study of the ligand effect further suggests that bidentate phosphine ligands are generally superior, with the yield increasing with the increasing bite angle of the phosphine employed, and L1 is the only ligand that generates full conversion with the optimal yield (Table 1, entry 5). The addition of a base improves the reaction outcome appreciably, likely by neutralising the in situ-generated HBr (Table 1, entry 6). A survey of different solvents reveals that dioxane and THF are individually good, albeit generating slightly lower yields than that obtained using the mixture (Table 1, entries 7–9).

With the conditions determined, the scope of alkyl bromides was examined first (Fig. 2). Ketone 1 is successfully coupled with various alkyl bromides, with 5-, 6-, 7-, or 12-membered cycloalkyls (3–6) generating good yields of the desired coupling products. Heterocyclic bromides, with moieties such as tetrahydropyrane (7) and THF (8), react smoothly, resulting in good yields. Remarkably, the polycyclic bromide derived from the natural steroid stanolone is also amenable to coupling under the reaction conditions (9). Linear alkyl bromides are also suitable for reaction (10–12). We then investigated substrates with a CF2 group. Bromofluoroacetate, bromodifluoromethyl ketone, perfluoroalkyl bromide, bromodifluoromethyl phosphonate, and bromodifluoromethyl sulfone effectively undergo the desired annulation (13–17).

Unless otherwise specified, all the reactions were carried out using ketone 1 (0.1 mmol, 1.0 equiv) and alkyl bromide (0.15 mmol, 1.5 equiv.), PdCl2 (10 mol%), dpppent (12 mol%) and Na2CO3 (1.0 equiv) in dioxane/THF (1:2) at 130 °C. Isolated yields after chromatography are shown.

We further explored the rearrangements of various heteroaryl ketones with bromodifluoroacetate (Fig. 3). The rearrangement took place smoothly by using 2-acylimidazoles and 2-acylbenzimidazoles as substrates (18–41). Both electron-rich and deficient substrates are competent during the cyclization process. A range of functional groups are compatible, including aryl fluorides (28 and 40) and chlorides (20 and 39), trifluoromethyl (21 and 38), esters (23) and cyano (22), are all tolerated. Changing the nitrogen protecting group from methyl to isopropyl (30) and benzyl (31) did not significantly affect the reactivity.

Isolated yields after chromatography are shown. The CCDC number of 43 is 2116753, 52 is 2116752. aThe reaction was performed under optimised condition A: ketone 1 (0.1 mmol, 1.0 equiv) and ethyl bromodifluoroacetate (0.15 mmol, 1.5 equiv), PdCl2 (10 mol%), dpppent (12 mol%) and Na2CO3 (1.0 equiv) in dioxane/THF (1:2) at 120 °C for 24 h. bThe reaction was conducted under optimised condition A with a slight modification: bis(2-diphenylphosphinophenyl)ether (DPEPhos) (12 mol%) was used as ligand during the reaction. cThe reaction was performed under optimised condition B: ketone 1 (0.1 mmol, 1.0 equiv) and ethyl bromodifluoroacetate (0.15 mmol, 1.5 equiv), PdCl2 (10 mol%), dppf (12 mol%) and K2CO3 (1.0 equiv) in dioxane/THF (1:1) at 130 °C for 24 h. dppf = 1,1′-bis(diphenylphosphino)ferrocene.

Compared to the substrate with 4,5-diphenylimidazole (32), the reactions of 4-phenylimidazole (33) and imidazole (34) yield lower conversions, indicating that aromatisation is essential to promote the reaction. Marketed drug-derived ketones, such as ketoconazole (41), also react smoothly despite the presence of several other functional groups. Significantly, numerous substrates are synthesised via direct acylation of commercially available imidazoles or benzimidazoles, with the resulting ketones directly undergoing rearrangement, which further highlights the efficiency of this process. Further, we examined other types of heterocycles, which should yield different heterocyclic cores via rearrangement. Heterocycles such as thiazole (42), benzothiazoles (43–51), benzoxazole (52), and oxazole (53) may also be incorporated, yielding pharmaceutically interesting fused-ring skeletons65,66.

A study was performed to investigate the reaction pathway. To determine whether an alkyl radical exists during this Pd-catalysed process, a radical inhibition study was performed. When 2,2,6,6-tetramethylpiperidinooxy (TEMPO) is added to the reaction mixture, it traps alkyl radicals, indicating that the reaction involves radical species (Fig. 4a). An electron paramagnetic resonance (EPR) study of the reaction of bromocyclopentane with the spin-trapping agent phenyl-N-tert-butylnitrone reveals the presence of spin adducts of the trapped alkyl radicals 56 and 57 (Fig. 4b), as indicated by the EPR spectrum (see supporting information). Deuterium labelling studies were conducted using the heteroaryl ketone D-1 (79% deuterium content) as a substrate under the optimised conditions, with a significant level of the deuterated product D-2 (76% deuterium content) detected, suggesting that there were no reversible hydro-metallation in this process (Fig. 4c)67,68. Finally, we synthesised an aryl Pd complex (58-[Pd]), with 12 produced instead of 59 in the presence of 58-[Pd], benzyl bromide, and 1 (Fig. 4d). Therefore, the alkyl group of the fused heterocyclic product is not derived from the migratory insertion of the Pd(II) complex. The proposed reaction pathway is thus shown in Fig. 4e. The reaction may be initiated by a single electron transfer between Pd(0) and the alkyl bromide, producing hybrid alkyl Pd(I)-radical species INT I. Subsequently, radical addition to the alkene occurs, leading to the hybrid benzylic radical INT II, which then undergoes dearomatisative-spirocyclisation to form the spiro-N-radical INT III. Aromatisation-driven intramolecular acyl transfer may then occur to form the alkyl radical INT IV. Subsequent β-H elimination at the latter yields the product with concomitant regeneration of the Pd catalyst. This proposed mechanism is also supported by X-ray photoelectron spectroscopy, which revealed the presence of three distinct Pd oxidation states (Pd(0), Pd(I), and Pd(II)) during the process, suggesting that Pd(I) species may be involved.

a Radical trapping study using TEMPO showing that alkyl radical species are involved in the reaction. b EPR studies also suggest that this reaction may involve alkyl radicals. c Deuterium labelling studies. d Reaction of 1 with benzyl bromide in the presence of [Ph(PPh3)2PdBr] (58-[Pd]). e A proposed reaction pathway.

Further studies were conducted to demonstrate the viability of this acyl transfer-annulation strategy. The protocol was applied in the late-stage modifications of natural products and drug derivatives (Fig. 5a). Various complex molecules with diverse structural features, such as steroids (62 and 69), N-heteroarenes (oxazole 63 and indole 68), alkaloids (66), and carbohydrates (72), are readily converted into the corresponding products in useful yields. This strategy provides a straightforward, versatile method of generating valuable N-fused heterocyclic moieties within complex molecules. Given the ubiquity of N-fused heterocycles in pharmaceuticals, this approach may be used in the field of medicinal chemistry.

a Using the tranfer-annulation strategy in the late-stage modifications of complex frameworks based on natural products and drug molecules. b Gram-scale synthesis and various useful transformations of 2. The CCDC number of 74 is 2131840.

To showcase the scalability of this process, a gram-scale reaction was carried out. Gratifyingly, a satisfactory 67% isolated yield (80% yield based on recovered 1) of product 2 could be obtained without modification of the optimised conditions (Fig. 5b). The N-fused heterocyclic scaffold can readily undergo various transformations to access a range of synthetically useful scaffolds. For example, the bromination of 2 proceeded to afford 74, excellent selectivity for the 9-position was observed, which allows follow-up fused heterocycle manipulations through cross-couplings. Treatment with mCPBA, deconstruction of N-fused heterocycle was observed, which afforded 75 in 53% yield. Diazidation product 76 was afforded in 48% yield via vicinal diazidation of olefin. Moreover, the ester moiety was smoothly reduced with NaBH4, affording the corresponding alcohol 77 in 68% yield.

In conclusion, a synthetically useful, mechanistically intriguing intramolecular acyl transfer of heteroaryl ketones was developed, which was suitable for use in fused-ring synthesis. The formation of a high-energy pre-aromatic spirocyclic intermediate was critical in the successful transformation, with aromatisation the driving force that facilitated C–C bond cleavage. Given the ready availability of the ketone moiety, this strategy could be used to simplify the syntheses of complex N-fused heterocyclic systems, which are privileged structures within numerous biologically active compounds. Moreover, the protocol enabled the late-stage modifications of intricate natural products and drug derivatives and may thus facilitate heterocyclic drug discovery.

In a nitrogen-filled glovebox, an oven-dried 10 mL sealed tube equipped with a Teflon-coated magnetic stir bar was charged successively with heteroaryl ketone 1 (0.1 mmol), alkyl bromide (0.15 mmol, 1.5 equiv), PdCl2 (0.01 mmol, 10 mol%), dpppent (0.012 mmol, 12 mol%), Na2CO3 (0.1 mmol, 1.0 equiv) and dioxane/THF (1.0 mL, 1:2). The tube then was sealed with a Teflon screw cap, moved out of the glovebox, and placed on a hotplate pre-heated to 130 °C for 24–36 h. After completion of the reaction, the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated under vacuum. The residue was purified via silica gel chromatography.

In a nitrogen-filled glovebox, an oven-dried 10 mL sealed tube equipped with a Teflon-coated magnetic stir bar was charged successively with heteroaryl ketone 1 (0.1 mmol), difluorobromoethyl ester (0.15 mmol, 1.5 equiv), PdCl2 (0.01 mmol, 10 mol%), dppf (0.012 mmol, 12 mol%), K2CO3 (0.1 mmol, 1.0 equiv) and dioxane/THF (1.0 mL, 1:1). The tube then was sealed with a Teflon screw cap, moved out of the glovebox, and placed on a hotplate pre-heated to 120 °C for 24 h. After completion of the reaction, the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated under vacuum. The residue was purified via silica gel chromatography.

Data relating to the optimisation studies, mechanistic studies, general methods, and the characterisation data of materials and products, are available in the Supplementary Information. Crystallographic parameters for compounds 2, 43, 52 and 74 are available free of charge from the Cambridge Crystallographic Data Centre under CCDC 2116750 (2), 2116753 (43), 2116752 (52) and 2131840 (74). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

Taylor, R. D., MacCoss, M. & Lawson, A. D. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

Article CAS PubMed Google Scholar

Ning, J. et al. A highly sensitive and selective two-photon fluorescent probe for real-time sensing of cytochrome P450 1A1 in living systems. Mater. Chem. Front. 2, 2013–2020 (2018).

Article CAS Google Scholar

Kumar, S., Bawal, S. & Gupta, H. Biological activities of quinoline derivatives. Mini. Rev. Med. Chem. 9, 1648–1654 (2009).

Article CAS PubMed Google Scholar

Bollini, M. et al. New potent imidazoisoquinolinone derivatives as anti-trypanosoma cruzi agents: Biological evaluation and structure–activity relationships. Bioorg. Med. Chem. 17, 1437–1444 (2009).

Article CAS PubMed Google Scholar

Cui, J. et al. A highly sensitive and selective fluorescent probe for N2H4 in air and living cells. N. J. Chem. 41, 11891–11897 (2017).

Article CAS Google Scholar

Hao, Y. et al. Discovery of tryptanthrins as novel antiviral and anti-phytopathogenic-fungus agents. J. Agric. Food Chem. 68, 5586–5595 (2020).

Article CAS PubMed Google Scholar

Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

Article CAS PubMed Google Scholar

Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

Article CAS PubMed Google Scholar

McGrath, N. A., Brichacek, M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our lives. Chem. Educ. 87, 1348–1349 (2010).

Article CAS Google Scholar

Royer J. Asymmetric Synthesis of Nitrogen Heterocycles (Wiley-VCH, 2009).

Eicher, T., Hauptmann, S. & Speicher, A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications (Wiley-VCH, 2012).

Wu, X.-F. Transition Metal-Catalyzed Heterocycle Synthesis via C–H Activation (Wiley-VCH, 2015).

Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

Article CAS PubMed Google Scholar

Burke, H. M., McSweeney, L. & Scanlan, E. M. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat. Commun. 8, 15655 (2017).

Article ADS PubMed PubMed Central CAS Google Scholar

Ramakers, B. E. I., van Hesta, J. C. M. & Löwik, D. W. P. M. Molecular tools for the construction of peptide-based materials. Chem. Soc. Rev. 43, 2743–2756 (2014).

Article CAS PubMed Google Scholar

Penteado, F. et al. α-Keto acids: acylating agents in organic synthesis. Chem. Rev. 19, 7113–7278 (2019).

Article CAS Google Scholar

Li, G. & Szostak, M. Transition-metal-free activation of amides by N−C bond cleavage. Chem. Rec. 20, 649–659 (2020).

Article CAS PubMed Google Scholar

Shi, S., Nolan, S. P. & Szostak, M. Well-defined palladium(II)–NHC precatalysts for cross-coupling reactions of amides and esters by selective N–C/O–C cleavage. Acc. Chem. Res. 51, 2589–2599 (2018).

Article CAS PubMed Google Scholar

March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (8th ed) pp 579–586, pp 891–899 (John Wiley & Sons, 2020).

Chen, P.-h, Billett, B. A., Tsukamoto, T. & Dong, G. "Cut and sew" transformations via transition-metal-catalyzed carbon-carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

Article CAS PubMed PubMed Central Google Scholar

Murakami, M. & Ishida, N. Cleavage of carbon-carbon σ-bonds of four-membered rings. Chem. Rev. 121, 264–299 (2021).

Article CAS PubMed Google Scholar

Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C−C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

Article CAS PubMed Google Scholar

Seiser, T., Saget, T., Tran, D. N. & Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 50, 7740–7752 (2011).

Article CAS Google Scholar

Murakami, M., Amii, H. & Ito, Y. Selective activation of carbon–carbon bonds next to a carbonyl. Nature 370, 540–541 (1994).

Article ADS CAS Google Scholar

Murakami, M. & Chatani, N. Cleavage of carbon-carbon single bonds by transition metals (Wiley-VCH, 2015).

Bender, M., Turnbull, B. W. H., Ambler, B. R. & Krische, M. J. Ruthenium-catalyzed insertion of adjacent diol carbon atoms into C–C bonds: entry to type II polyketides. Science 357, 779–781 (2017).

Article CAS PubMed PubMed Central Google Scholar

Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

Article CAS PubMed Google Scholar

Deng, L. & Dong, G. Carbon-carbon bond activation of ketones. Trends Chem. 2, 183–198 (2020).

Article CAS Google Scholar

Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

Article CAS PubMed PubMed Central Google Scholar

Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

Article CAS PubMed Google Scholar

Lu, H., Yu, T.-Y., Xu, P.-F. & Wei, H. Selective decarbonylation via transition-metal-catalyzed carbon-carbon bond cleavage. Chem. Rev. 121, 365–411 (2021).

Article CAS PubMed Google Scholar

Song, F., Gao, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

Article CAS PubMed Google Scholar

Dreis, A. M. & Douglas, C. J. Catalytic carbon-carbon σ bond activation: an intramolecular carbo-acylation reaction with acylquinolines. J. Am. Chem. Soc. 131, 412–413 (2009).

Article CAS PubMed Google Scholar

Jun, C.-H. & Lee, H. Catalytic carbon-carbon bond activation of unstrained ketone by soluble transition-metal complex. J. Am. Chem. Soc. 121, 880–881 (1999).

Article CAS Google Scholar

Xia, Y. et al. Catalytic activation of carbon-carbon bonds in cyclopentanones. Nature 539, 546–550 (2016).

Article CAS PubMed PubMed Central Google Scholar

Rong, Z. Q. et al. Intramolecular acetyl transfer to olefins by catalytic C–C bond activation of unstrained ketones. Angew. Chem. Int. Ed. 57, 475–479 (2018).

Article CAS Google Scholar

Xia, Y. et al. Two-carbon ring expansion of 1-indanones via insertion of ethylene into carbon-carbon bonds. J. Am. Chem. Soc. 141, 13038–13042 (2019).

Article CAS PubMed PubMed Central Google Scholar

Shao, P., Yu, T., Lu, H., Xu, P.-F. & Wei, H. Regiodivergent access to 2- or 3-substituted indanones: catalyst-controlled carboacylation via C–C bond activation. CCS Chem. 2, 1862–1871 (2020).

Google Scholar

Zhang, R., Xia, Y. & Dong, G. Intermolecular [5+2] annulation between 1-indanones and internal alkynes by rhodium-catalyzed C–C activation. Angew. Chem. Int. Ed. 60, 20476–20482 (2021).

Article CAS Google Scholar

Huang, J., Zhang, R., Wu, X., Dong, G. & Xia, Y. Intramolecular one-carbon homologation of unstrained ketones via C–C activation-enabled 1,1-insertion of alkenes. Org. Lett. 24, 2436–2440 (2022).

Article CAS PubMed Google Scholar

Schleyer, P. V. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).

Article CAS PubMed Google Scholar

King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773–3779 (1972).

Article CAS Google Scholar

Crabtree, R. H., Dion, R. P., Gibboni, D. J., Mcgrath, D. V. & Holt, E. M. Carbon–carbon bond cleavage in hydrocarbons by iridium complexes. J. Am. Chem. Soc. 108, 7222–7227 (1986).

Article CAS Google Scholar

Youn, S. W., Kim, B. S. & Jagdale, A. R. Pd-catalyzed sequential C–C bond formation and cleavage: evidence for an unexpected generation of arylpalladium(II) species. J. Am. Chem. Soc. 134, 11308–11311 (2012).

Article CAS PubMed Google Scholar

Smits, G., Audic, B., Wodrich, M. D., Corminboeuf, C. & Cramer, N. A β-carbon elimination strategy for convenient in situ access to cyclopentadienyl metal complexes. Chem. Sci. 8, 7174–7179 (2017).

Article CAS PubMed PubMed Central Google Scholar

Xu, Y. et al. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature 567, 373–378 (2019).

Article ADS CAS PubMed PubMed Central Google Scholar

Zhou, X., Xu, Y. & Dong, G. Deacylation-aided C–H alkylative annulation through C–C cleavage of unstrained ketones. Nat. Catal. 4, 703–710 (2021).

Article CAS PubMed Google Scholar

Zhou, X., Xu, Y. & Dong, G. Olefination via Cu-mediated dehydroacylation of unstrained ketones. J. Am. Chem. Soc. 143, 20042–20048 (2021).

Article CAS PubMed Google Scholar

Roche, S. P. & Porco, J. A. Jr. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

Article CAS Google Scholar

Zhuo, C.-X., Zhang, W. & You, S.-L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

Article CAS Google Scholar

Wu, W.-T., Zhang, L. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev. 45, 1570–1580 (2016).

Article CAS PubMed Google Scholar

Zheng, C. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat. Prod. Rep. 36, 1589–1605 (2019).

Article CAS PubMed Google Scholar

Flynn, A. R., McDaniel, K. A., Hughes, M. E., Vogt, D. B. & Jui, N. T. Hydroarylation of arenes via reductive radical-polar crossover. J. Am. Chem. Soc. 142, 9163–9168 (2020).

Article CAS PubMed PubMed Central Google Scholar

Adams, K. et al. An iron-catalysed C–C bond-forming spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks. Nat. Chem. 9, 396–401 (2016).

Article PubMed CAS Google Scholar

Wang, Y., Zheng, C. & You, S.-L. Iridium-catalyzed asymmetric allylic dearomatization by a desymmetrization strategy. Angew. Chem. Int. Ed. 56, 15093–15097 (2017).

Article CAS Google Scholar

Zheng, C., Xia, Z.-L. & You, S.-L. Unified mechanistic understandings of pictet-spengler reactions. Chem 4, 1952–1966 (2018).

Article CAS Google Scholar

Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive fluorination of cyclic amines by carbon-carbon cleavage. Science 361, 171–174 (2018).

Article ADS CAS PubMed PubMed Central Google Scholar

Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).

Article CAS PubMed PubMed Central Google Scholar

Smaligo, A. J. et al. Hydrodealkenylative C(sp3)–C(sp2) bond fragmentation. Science 364, 681–685 (2019).

Article ADS CAS PubMed PubMed Central Google Scholar

Chen, Y., Du, J. & Zuo, Z. Selective C-C bond scission of ketones via visible-light-mediated cerium catalysis. Chem 6, 266–279 (2020).

Article CAS Google Scholar

Du, J. et al. Photocatalytic aerobic oxidative ring expansion of cyclic ketones to macrolactones by cerium and cyanoanthracene catalysis. Angew. Chem. Int. Ed. 60, 5370–5376 (2021).

Article CAS Google Scholar

Muller, C. K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

Article ADS PubMed CAS Google Scholar

Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

Article CAS PubMed Google Scholar

O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

Article PubMed Google Scholar

Michel, S., Tillequin, F. & Koch, M. Strellidimine: the first natural bis-ellipticine alkaloid. J. Chem. Soc. Chem. Commun. 229–230 https://pubs.rsc.org/en/content/articlelanding/1987/c3/c39870000229#!divAbstract (1987).

Teich, L. et al. Synthesis and biological evaluation of new derivatives of emodin. Bioorg. Med. Chem. 12, 5961–5971 (2004).

Article CAS PubMed Google Scholar

Liu, W. et al. Synthesis of spirocycles via Ni-catalyzed intramolecular coupling of thioesters and olefins. Chem. Eur. J. 127, 7651–7656 (2021).

Article CAS Google Scholar

Lv, L., Yu, L., Qiu, Z. & Li, C.-J. Switch in selectivity formal hydroalkylation of 1,3-dienes and enynes with simple hydrazones. Angew. Chem. Int. Ed. 59, 6466–6472 (2020).

Download references

We are grateful for the financial support from the National Natural Science Foundation of China (21971205), Key Research and Invention Program in Shaanxi Province of China (2021SF-299), Natural Science Basic Research Program of Shaanxi (2020JQ-574), Scientific Research Program of Shaanxi Education Department (No. 20JK0937) and Northwest University.

These authors contributed equally: Dan Ye, Hong Lu.

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069, Xi’an, China

Dan Ye, Hong Lu, Yi He, Jinghao Wu & Hao Wei

College of Food Science and Technology, Northwest University, 710069, Xi’an, China

Zhaojing Zheng

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

H.W. conceived and designed the project and composed the paper. D.Y., H.L., Y.H. and J.W. conducted the experiments and analysed the data. H.L. and Z.Z. discussed the experimental results and commented on the paper. H.W. conducted general guidance, project directing, and paper revisions.

Correspondence to Hao Wei.

The authors declare no competing interests.

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

Ye, D., Lu, H., He, Y. et al. Rapid syntheses of N-fused heterocycles via acyl-transfer in heteroaryl ketones. Nat Commun 13, 3337 (2022). https://doi.org/10.1038/s41467-022-31063-3

Download citation

Received: 16 February 2022

Accepted: 30 May 2022

Published: 09 June 2022

DOI: https://doi.org/10.1038/s41467-022-31063-3

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.